ABOUT US 1
Sunday, 18 June 2017 02:33Company profile: • Aswar Al Jib Trading & General Contracting Co. Ltd. - Aswar Al Jib Trading & General Contracting Co. Ltd. - Aswar Al Jib Trading & General Contracting Co. • Aswar Al-Jib works with all the designs and specialized studies of the water treatment plants on the scientific basis directly with its cost with the water treatment, which makes us able to meet all our needs. • Aswar Al-Jib Warehouses, Kitchens, Sewage Treatment Plants, Industrial, Sewage Treatment Plants, Factories, Stations and Domestic Sewerage "according to customer requirements. • Aswar El-Gab Company has specialized cadres of administrators, engineers, chemists and technicians with a wide range of expertise. We are aware of the importance of after-sale services by adopting the latest scientific programs for the operation, follow-up and maintenance of the stations to ensure the completion of their work with high quality and efficiency.
What are the basic components of a Reverse Osmosis System?
Saturday, 17 June 2017 08:50
A Reverse Osmosis System is built of five basic parts:
1) Pressure Vessels & Membranes
Obviously, a Reverse Osmosis System wouldn't get very far without membrane elements. The proteins that make up membrane elements vary depending on the kind of intake water and ending clarity. There are membrane elements for brackish water, seawater, hospital-grade disinfection, and membranes designed to remove specific contaminants to name a few. If there is a water treatment need, you can be sure there is certainly a membrane element for the job. The size of the task (municipal, commercial, or industrial) will determine the size and number of membranes in a system. There can be anywhere from a single two and a half inch membrane (like in an under-sink Reverse Osmosis System) to hundreds of eight inch membranes all working together (a typical reverse osmosis plant).
2) Reverse Osmosis Skid
The best way make your Reverse Osmosis system as durable as possible is with a powder coated, carbon steel frame to mount all of your components on. It's resistant to the elements, designed for the heavy vibration of high-pressure pumps, and mounts to the ground to ensure that it will last a lifetime.
3) Cartridge Filter
Most Reverse Osmosis Systems come with a cartridge filter to ensure that no particles large enough to damage the membranes come anywhere near them. This cartridge is usually a five micron spun polypropylene filter, but can vary upon request. The cartridge comes in a durable casing that can handle the pressure from the main feed or booster pumps.
4) Reverse Osmosis High Pressure Pump
Without a high-grade pump, the rejection rate for a Reverse Osmosis System isn't viable in most commercial or industrial settings. It is vital to the system to ensure that the pump is matched to the membrane quantity and size appropriately. Usually, the higher the horsepower on the intake pump, the better the rejection and recovery rates of permeate.
5) Control Panel
Lastly, the Reverse Osmosis System has to be controlled by a human operator. At Pure Aqua, we use advanced PLCs or a solid-state microprocessor depending on how advanced the controls need to be. The controls can also be used to manage multiple systems simultaneously, effectively making a one-man water production plant.
Reverse Osmosis Systems can have a number of other components built onto or into them as extra components as well. The entire skid can be built into a containerized system, for example, so your Desalination by RO System is always on the go. There are a number of supplemental skids that can be attached to an RO System as well, for tasks like membrane cleaning, pretreatment, chemical dosing, and a number of other jobs as necessary.
How does a Reverse Osmosis System work?
Saturday, 17 June 2017 08:47Now that we know how Reverse Osmosis as a process works, let's take that and apply it to a real, working TWRO or BWRO System. If it only needed the membranes and a pump, it certainly wouldn't be so big, right?
A) Pre-Chlorination Dosing System
If the feed water contains traces of heavy metals or contaminated, it is high recommended to dose some chlorine to change the dissolved heavy metals to physical form, the media filter will be able to filter most of it.
B) Raw Water Storage Tank
Although some RO Systems can draw water right out of a well or pipe feed, most systems start with a large tank that stores the contaminated water. Not having enough feed water can damage a pump, so having a large storage tank for your intake water is an easy way to make sure your pump lasts for as long as possible.
C) Feed Water Pump
A commercial or industrial pump provides the initial pressure for the Treatment System. This motor usually provides enough water pressure to get through any pretreatment as well as the RO membranes, but if it doesn't a booster pump may be necessary farther down the line.
D) Multi-Layer or Media Filter
As much as we hate to admit it, there are some things that membranes can't purify. Nitrates, a common contaminant found in fertilizers and animal waste, are a good example of particles that dissolve too well in water for reverse osmosis to catch them. Things like foul odor and taste usually aren't prevented by reverse osmosis, either. A Multi-Layer filter can be filled with media that specifically targets the things your RO System can't catch. If you need to eliminate these contaminants, a Multi-Layer Filter is a must. An example of MMF or multi media filters is our MF-1000 Series.
E) Activated Carbon Filter
Activated carbon filters are good solution to reduce organic, bad taste, smell and chlorine from the water.
F) Automatic Water Softener
Automatic water softeners are designed to remove water hardness, calcium and magnesium ions, for small RO systems, we usually recommend water softeners instead of the antiscalant chemical dosing.
G) Antiscalant Chemical Dosing System
For larger RO systems, we use antiscalant dosing systems to dose our PA0100 antiscalant RO chemical, which helps in preventing membranes fouling. Please refer to our chemical dosing pumps series for more information CDS-Series.
H) Reverse Osmosis System
We finally have our Reverse Osmosis System. If a booster pump is necessary, it will typically be just before this step. The Reverse Osmosis System can produce up to one million gallons of product water a day from a steady intake, as well as a sizable amount of waste. Usually the waste water can be dumped down the drain, but check with your local water authorities in case it needs to be handled with care.
I) Product Water Storage Tank
The permeate from the RO purification system will usually go to a large tank, where it is held for use. If it didn't, the system would need to be running in order to have access to fresh water, which can be inconvenient. Sometimes, an RO treatment System pumps water directly into a well or aquifer for recharging instead of being used in many of the normal industries or applications it is used in.
J) Post-Chlorination Dosing System
If the permeate water is intended to be stored for more than one day, it is highly recommended to dose some chlorine to maintain clean and non contaminated water.
K) Product Water Pump (Re-pressurization)
This pump repressurizes the permeate water to the point of use ends. This is selected based on the overall travelling distance and required head. This pump must be selected in stainless steel to prevent any contamination to the permeate water.
L) Product Water UV Sterilizer
The UV sterilizer is placed after the storage tank, and as a final disinfection device. Most of the time, we either use post chlorination as a disinfectant agent, or ultraviolet sterilization.
What is Reverse Osmosis?
Saturday, 17 June 2017 08:46Reverse osmosis is a hot topic in the water treatment industry. With the lowest energy requirements, some of the highest recovery rates, and one of the best rejection rates on the market, it's no wonder people are interested in learning more about it. What is the definition of reverse osmosis, though? How does it work? Let's take a look into the heart of a VENOUS CENTER RO System and break it down for you to understand.
As anyone could guess, is the process of osmosis backwards. Osmosis is the passage of water through a protein membrane (like our skin, or the inside of a plant cell) to equalize the concentration of particles dissolved in the water. The protein membrane allows water to pass through, but molecules larger than water (things like minerals, salts, and bacteria) cannot. Water flows back and forth until the concentration is equal on both sides of the membrane, and an equilibrium is formed.
Let's apply this knowledge to water purification. We want to drink water from a lake or stream, but it contains too high concentration of contaminants like salt, minerals, and bacteria, that make it undrinkable. By applying pressure to water as it passes through a membrane, the water can be forced to move away from the membrane rather than attempting to form an equilibrium like normal. This against-flow motion is where the "reverse" in "reverse osmosis" comes from. A pump works well for this process. Water is forced through the membrane, which like a super-fine particle filter, blocks an extreme majority of contaminants from coming through.
As a purification process, it has a number of advantages as well as disadvantages. In water treatment, TFC membranes can usually remove between 96 and 99% of most contaminants, including salts and minerals, dyes, particles, bacteria, and hazardous metals. Because of the way reverse osmosis works, however, you can never truly remove all of a contaminant. You may purify down to a fraction of a fraction of a percent, but the contaminant can never be truly eliminated with reverse osmosis. Treatment systems also requires a high-grade pump, because the rejection rate is primarily dependent on the pressure applied to the membrane. That being said, smaller units have smaller ratios of permeate (clean, purified product) to waste water. This makes media filtration or other conventional filtration more effective in smaller scales (like residential settings).